Linux 设备驱动轮询编程

Linux系统下网络模型数select最为常用,当然,select只是检测文件系统数据状态,并不只局限于网络编程,select的功能需要底层驱动提供支持,其中核心应用即为等待队列,其他模型,如poll和epoll,对驱动来说并无区别,驱动只是返回数据状态而已。

那在驱动层面是如何支持select的呢?驱动需要实现file_operations结构中的poll函数指针,其实现也非常简单,只是poll_wait函数的调用,原型如下:

unsigned int (*poll) (struct file *, struct poll_table_struct *);
void poll_wait(struct file *filp, wait_queue_head_t *queue, poll_table * wait);

需要注意的是poll_wait函数不会像它名字一样处于wait状态,仅供上层查询之用。其编程基本框架也比较固定,现修改 字符驱动 中的simple程序,实现poll回调函数如下:

unsigned int simple_poll (struct file * filp, struct poll_table_struct * wait)
{
	unsigned int mask = 0;
	poll_wait(filp, &simple_queue, wait);

	if (len > 0)
	{
		mask |= POLLIN | POLLRDNORM;
	}

	return mask;
}

在每次read之后都把len赋值为0,调用write把len赋值为数据长,poll中只需判断len,如果len大于0,则返回可读,整理之后,整个程序代码如下:

#include <linux/init.h>
#include <linux/module.h>

#include <linux/fs.h>
#include <linux/types.h>
#include <linux/cdev.h>
#include <linux/mm.h>
#include <linux/sched.h>
#include <asm/io.h>
#include <asm/uaccess.h>
#include <asm/system.h>

#include <linux/device.h>
#include <linux/poll.h>

dev_t devno;
struct class * simple_class;
static struct cdev cdev;

wait_queue_head_t simple_queue;

char test_data[255];
int len = 0;

unsigned int simple_poll (struct file * filp, struct poll_table_struct * wait)
{
	unsigned int mask = 0;
	poll_wait(filp, &simple_queue, wait);

	if (len > 0)
	{
		mask |= POLLIN | POLLRDNORM;
	}

	return mask;
}

ssize_t simple_read(struct file * pfile,
	char __user * buf, size_t size, loff_t * ppos)
{
	int ret = len;
	len = 0;
	if (copy_to_user(buf, test_data, ret))
		return -EFAULT;
	else
		return ret;
}

ssize_t simple_write(struct file * pfile, const char __user * buf, size_t count, loff_t * ppos)
{
	if (count > 255)
	{
		return -EFAULT;
	}

	if (!copy_from_user(test_data, buf, count))
	{
		len = count;
		wake_up(&simple_queue);
	}
	return len;
}

int simple_open(struct inode * pnode, struct file * pfile)
{
	printk(KERN_INFO "open simple\n");
	return 0;
}

int simple_release(struct inode * pnode, struct file * pfile)
{
	printk(KERN_INFO "close simple\n");
	return 0;
}

static struct file_operations simple_op = 
{
	.owner = THIS_MODULE,
	.read = simple_read,
	.open = simple_open,
	.release = simple_release,
	.write = simple_write,
	.poll = simple_poll,
};

static int __init initialization(void)
{
	int result;

	result = alloc_chrdev_region(&devno, 0, 1, "simple");
	if (result < 0)
		return result;

	cdev_init(&cdev, &simple_op);
	result = cdev_add(&cdev, devno, 1);

	simple_class = class_create(THIS_MODULE, "simple");
	device_create(simple_class, NULL, devno, NULL, "simple");

	printk(KERN_INFO " init simple\n");

	init_waitqueue_head(&simple_queue);

	return result;
}

static void __exit cleanup(void)
{
	device_destroy(simple_class, devno);
	class_destroy(simple_class);

	cdev_del(&cdev);
	unregister_chrdev_region(devno, 1);
	printk(KERN_INFO " cleanup simple\n");
}

module_init(initialization);
module_exit(cleanup);

MODULE_AUTHOR("alloc cppbreak@gmail.com");
MODULE_DESCRIPTION("A simple linux kernel module");
MODULE_VERSION("V0.1");
MODULE_LICENSE("Dual BSD/GPL");

用户态使用select测试程序如下:

#include <sys/select.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdio.h>
int main()
{
	int fd, ret;
	char data[255];
	fd_set set;

	fd = open("/dev/simple", O_RDONLY | O_NONBLOCK);
	while (fd != -1)
	{
		FD_ZERO(&set);
		FD_SET(fd, &set);
		select(fd + 1, &set, 0, 0, 0);
		if (FD_ISSET(fd, &set))
		{
			printf("simple can read\n");
			ret = read(fd, data, 255);
			data[ret] = 0;
			printf("\t%s\n", data);
		}
	}
	return 0;
}

最终效果,加载驱动之后,使用uesr程序select,会进入阻塞状态,当再另一个终端下写入数据 echo “simple” > /dev/simple 后程序解除阻塞,输出:

:::bash
[root@cpphost driver]# ./a.out 
simple can read
	simple

这样,简单的几行代码就可让设备驱动支持select模型,复杂而又繁琐的工作都有系统内核处理掉了。

受好奇心驱使,可能会想系统是如何处理select请求的,select是个系统调用,最后会走到内核的do_select函数,位于fs/select.c,代码结构大致如下(仅留下框架):

int do_select(int n, fd_set_bits *fds, struct timespec *end_time)
{
	...
	struct poll_wqueues table;
	poll_table *wait;
	...
	poll_initwait(&table);
	...
	for (;;) {
		...
		for (i = 0; i < n; ++rinp, ++routp, ++rexp) {
			...
			for (j = 0; j < __NFDBITS; ++j, ++i, bit <f_op;
					mask = DEFAULT_POLLMASK;
					if (f_op && f_op->poll) {
						wait_key_set(wait, in, out, bit);
						/* 这里,调用了f_op的poll函数,即我们的实现 */
						mask = (*f_op->poll)(file, wait);
					}
					...
					if ((mask & POLLIN_SET) && (in & bit)) {
						res_in |= bit;
						retval++;
						wait = NULL;
					}
					if ((mask & POLLOUT_SET) && (out & bit)) {
						res_out |= bit;
						retval++;
						wait = NULL;
					}
					if ((mask & POLLEX_SET) && (ex & bit)) {
						res_ex |= bit;
						retval++;
						wait = NULL;
					}
				}
			}
			if (res_in)
				*rinp = res_in;
			if (res_out)
				*routp = res_out;
			if (res_ex)
				*rexp = res_ex;
			/* 这里进行调度 */
			cond_resched();
		}
		...
		/* 超时处理 */
		if (!poll_schedule_timeout(&table, TASK_INTERRUPTIBLE,
					   to, slack))
			timed_out = 1;
	}
	/* 释放table */
	poll_freewait(&table);

	return retval;
}

大致结构也很清晰,进入select时,首先初始化一个等待变量wait,对每一个描述符循环调用对应的poll回调函数,驱动中poll函数又把wait加入自己的等待队列,这样当有数据时,可以及时唤醒select,poll回调返回后,select检查返回的mask,是否有数据可读写,如果都没有,则调用cond_resched();进入等待,等待超时或者write唤醒等待队列。

这个过程也验证了select是遍历每个描述符,当描述符增多时导致效率线性下降,所以有了更为先进的 epoll 模型,具体实现可以参考 epoll源码分析

Built with Hugo
主题 StackJimmy 设计